Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing

نویسندگان

  • Nilesh V. Khade
  • Tomohiko Sugiyama
چکیده

Yeast Rad52 (yRad52) has two important functions at homologous DNA recombination (HR); annealing complementary single-strand DNA (ssDNA) molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity). Its human homolog (hRAD52) has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51) onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding

RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function,...

متن کامل

Rad51 protein controls Rad52-mediated DNA annealing.

In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing...

متن کامل

Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation.

The Rad51 nucleoprotein filament mediates DNA strand exchange, a key step of homologous recombination. This activity is stimulated by replication protein A (RPA), but only when RPA is introduced after Rad51 nucleoprotein filament formation. In contrast, RPA inhibits Rad51 nucleoprotein complex formation by prior binding to single-stranded DNA (ssDNA), but Rad52 protein alleviates this inhibitio...

متن کامل

Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules.

Saccharomyces cerevisiae Rad52 performs multiple functions during the recombinational repair of double-stranded DNA (dsDNA) breaks (DSBs). It mediates assembly of Rad51 onto single-stranded DNA (ssDNA) that is complexed with replication protein A (RPA); the resulting nucleoprotein filament pairs with homologous dsDNA to form joint molecules. Rad52 also catalyzes the annealing of complementary s...

متن کامل

Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52.

A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52 with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA bindi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016